République Tunisienne Ministère de l'Enseignement Supérieur Et de la Recherche Scientifique Université de Monastir Concours de Réorientation Session Mars 2022

الجمهورية التونسية وزارة التعليم العالي والبحث العلمي جامعة المنستير مناظرة إعادة التوجيه الجامعي دورة مارس 2022

Corrigé de l'Epreuve de Sciences Physiques (groupe N°2)

Coefficient: 1

CHIMIE

	,		Exercice n°1 (3	,75 p	oints)		
	Corrigé						Barème
I.1.	Signification de t _f pour la réaction	t _f corresp	ormation totale oond à l'instant de des deux réactifs.		Transformation limitée t _f correspond à l'instant d'atteinte de l'état d'équilibre chimique.		4x0,25
	Comparaiso de y _f à y _{max}	on y	$y_f = y_{max}$		y _f < y _{max}		
1.2.	$(V_{\text{vol}})_{\text{moy}} = \frac{y_f - y(0)}{t_f - 0} = \frac{y_f}{t_f}$					0,25	
II.1.a.	$\begin{split} & [I^{\scriptscriptstyle -}]_0 = \frac{C_1 V_1}{V_1 + V_2} = 10^{-2} \text{ mol.L}^{-1} \text{ et } [S_2 O_8^{2 \scriptscriptstyle -}]_0 = \frac{C_2 V_2}{V_1 + V_2} = 5.10^{-3} \text{ mol.L}^{-1}. \\ & [I^{\scriptscriptstyle -}]_0 = 2 \ [S_2 O_8^{2 \scriptscriptstyle -}]_0 \text{et comme une mole de } S_2 O_8^{2 \scriptscriptstyle -} \text{ nécessite deux moles de } I^{\scriptscriptstyle -} \text{alors le mélange préparé est stæchiométrique en ces deux ions.} \end{split}$					3x0,25	
II.1.b.	t = 0 t>0 t _f	10 ⁻² mol.L ⁻¹	+ S ₂ O ₈ ²⁻ 5.10 ⁻³ mol.L ⁻¹ 5.10 ⁻³ - y 5.10 ⁻³ - y _f	=	l ₂ 0 y y _f	+ 2 SO ₄ ² - 0 2 y 2 y _f	0,5
II.1.c.	y _{max} =5.10 ⁻³ mol.L ⁻¹ .					0,25	
II.2.a.	$y_f = (V_{vol})_{moy} \cdot t_f = 1,25.10^{-4} \times 40 = 5.10^{-3} \text{mol.L}^{-1}.$				0,25		
II.2.b.	$y_f=y_{max} \rightarrow la \ réaction \ entre \ l^-et \ S_2O_8^{2-} \ est \ totale.$				0,25		
II.3.	$\begin{split} S_2O_8^{2^-} & \text{ est maintenant en défaut par rapport à I^- (puisque V_4<V_3)} & \to \\ y_f^{'} &= [S_2O_8^{2^-}]_0^{'} &= \frac{C_2.V_4}{V_3+V_4} = 4.10^{-3} \text{mol.L}^{-1}. \\ & \left(n_{S_2O_8^{2^-}}\right)_f^{'} &= 0 \;, \left(n_{I^-}\right)_f^{'} = C_1V_3 - 2y_f^{'}\left(V_3+V_4\right) = 2.10^{-4} \text{mol} \;, \\ & \left(n_{I_2}\right)_f^{'} &= y_f^{'}\left(V_3+V_4\right) = 2.10^{-4} \text{mol} \text{et} \left(n_{SO_4^{2^-}}\right)_f^{'} = 2\left(n_{I_2}\right)_f^{'} = 4.10^{-4} \text{mol} \;. \end{split}$					0,25 + 0,25	

Exercice n°2 (3,25 points)					
	Corrigé				
1.a.	$[OH^-]_{S_0} = \frac{Ke}{10^{-pH_0}} = 8,91.10^{-4} \text{mol.L}^{-1} < C_0 \rightarrow \text{L'ammoniac est une base faible.}$				
	NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-	0,25			
1.b.		0,25			
	$t = 0$ C_0 excès 0 10^{-7}				
	t _{éq} C ₀ - y _{éq} excès y _{éq} y _{éq} (*)				
	(*) en tenant compte de l'approximation indiquée par l'énoncée. Yég [OH ⁻] _{so} 8,91.10 ⁻⁴				
1.c.	$\tau_{f,0} = \frac{y_{eq}}{y_{max}} = \frac{[OH^{-}]_{s0}}{C_{0}} = \frac{8,91.10^{-4}}{5.10^{-2}} = 1,78.10^{-2}$				
	$ au_{f,0}$ < 0,05 \rightarrow dans la solution (S ₀), l'ammoniac est faiblement ionisé.				
1.d.					
	$K_a = 6.31.10^{-10} \rightarrow pK_a \approx 9.2$				
2.a.	$x = \frac{V_0 + V_{\text{eau}}}{V_0} = \frac{C_0}{C}$				
2.b.	Tant que l'ammoniac reste faiblement ionisé, τ_f vérifie la relation : $K_a = \frac{K_e}{C \tau^2}$.				
	Or $C = \frac{C_0}{x} \rightarrow K_a = x \left(\frac{K_e}{C_0.\tau_f^2}\right) \rightarrow x = \left(\frac{K_a.C_0}{K_e}\right)\tau_f^2$.				
2.c.	$\tau_{\rm f} < 0.05 \rightarrow \tau_{\rm f}^2 < 25.10^{-4} \rightarrow x < 25.10^{-4}. \left(\frac{{\rm Ka.C_0}}{{\rm K_e}}\right) = 7.9$				
	On a : V=V ₀ +V _e =100 mL et V=5V ₀ \rightarrow V ₀ =20 mL et V _e =80 mL.				
2.d ₁ .	On prélève le volume V ₀ =20 mL à l'aide d'une pipette jaugée de 20 mL et on le verse dans une fiole jaugée de 100 mL puis on complète avec l'eau distillée jusqu'au trait de jauge. En fin, on transvase le contenu de la fiole dans un flacon portant une étiquette précisant la nature de la solution et on range le matériel et les produits chimiques.				
2.d ₂ .	La base étant faiblement ionisée, →pH= $\frac{1}{2}$ (pKa + pKe + logC)=10,6.	0,25			

PHYSIQUE

	Exercice n°1 (5,25 points)				
	Corrigé	Barème			
Exp1 1.	L'ébranlement est transversal car sa direction est perpendiculaire à la direction de propagation.	0,25			
2.	$v = \frac{SB}{t_1} = \frac{0.8}{0.05} = 16 \text{ m.s}^{-1}.$	0,5			
Exp2 1.a.	En lumière stroboscopique de fréquence N _{e1} , la partie en mouvement de la corde parait sous la forme d'une sinusoïde immobile. En lumière ordinaire, elle parait sous la forme d'une bande floue de largeur "2a".				
1.b.	L'immobilité apparente est obtenue pour N_e vérifiant la condition : $N_e = \frac{N}{p}$; $p \in \mathbb{N}^* \to N$				
	est un multiple commun de N_{e1} et N_{e2} . Et comme $20 \le N \le 60$ Hz ; alors $N=N_{e2}=50$ Hz.				
	$\lambda = \frac{V}{N} = \frac{16}{50} = 0,32 \text{m} = 32 \text{cm}$.				
2.a.	La distance parcourue par le front d'onde à l'instant de date t_2 est égale à $3\lambda \to t_2 = 3T = 60 ms$.				
	A l'instant de date t_2 , le point B d'abscisse x_B =80cm=2,5 λ passe par sa position de repos en se déplaçant vers le bas.	2x0,25			
2.b.	Tout point de la corde reproduit le mouvement de la source à partir de l'instant où il est				
	atteint par l'onde : $y(x,t) = y(t - \frac{x}{v})$ si $x \le v.t$				
	$ \Rightarrow \begin{cases} y(x,t_2) = 0 \text{ si } x \ge v.t_2 = 3\lambda \\ y(x,t_2) = a\sin(2\pi Nt_2 - \frac{2\pi x}{\lambda} + \phi) = a\sin(6\pi - \frac{2\pi x}{\lambda} + \phi) = a\sin(-\frac{2\pi x}{\lambda} + \phi) \text{ si } x \le 3\lambda \end{cases} $	0,5			
	Graphiquement, on a :				
2.c.	$\int y(x,t_2) = 0 \text{ si } x \ge 3\lambda$	0,5 +			
	$\begin{cases} y(x, t_2) = 2.10^{-3} \sin(\frac{2\pi x}{\lambda} + \Psi) = 2.10^{-3} \sin(\frac{2\pi x}{\lambda} + \pi) = -2.10^{-3} \sin(\frac{2\pi x}{\lambda}) \text{ si } x \le 3\lambda \end{cases}$				
	Et comme y (x,t ₂) = a sin($-\frac{2\pi x}{\lambda} + \phi$) = $-a sin(\frac{2\pi x}{\lambda} - \phi)$, alors ϕ =0 et a=2.10 ⁻³ m.				
3.	Avec la nouvelle fréquence, on a : $y(x_B, t_2) = a \sin(2\pi N' t_2 - \frac{2\pi x_B}{\lambda'})$; $\lambda' = \frac{v}{N'}$.				
	Le point B aura une élongation maximale si : $a \sin(2\pi N' t_2 - \frac{2\pi x_B}{\lambda'}) = a \rightarrow$				
	$2\pi N't_2 - \frac{2\pi x_B}{\lambda'} = \frac{\pi}{2} + 2k\pi \; ; \; k \in IN \; \rightarrow \; N't_2 - \frac{x_B}{v}N' = k + \frac{1}{4} \; ; \; k \in IN$				
	$\rightarrow N' \times \left(t_2 - \frac{x_B}{v}\right) = \left(k + \frac{1}{4}\right); \ k \in IN$	0,75			
	→ N' = 100 $(k + \frac{1}{4})$; $k \in IN$.				
	Et puisque : 20 ≤ N' < 50Hz , alors -0,05 ≤ k < 0,25 → k=0 et N'=25Hz.				

Exercice n°2 (7,75 points)				
	Corrigé	Barème		
Exp.1 1.a.	$\begin{cases} u_{C}(t) + u_{R_{1}}(t) = E \\ u_{R_{1}}(t) = R_{1}C\frac{d}{dt}u_{C}(t) \\ u_{C}(t) + R_{1}C\frac{d}{dt}u_{C}(t) = E \end{cases}$ $E \uparrow \qquad $	0,5		
Exp.1 1.b.	$\begin{split} u_C(t) &= A \; (1 - e^{-\frac{t}{\tau}}) \to \begin{cases} \tau : \text{la constante de temps du circuit.} \\ A : \text{la valeur maximale que peut atteindre } u_C(t). \end{cases} \\ A \cdot (1 - e^{-\frac{t}{\tau}}) + R_1 C \frac{d}{dt} \left(A \cdot (1 - e^{-\frac{t}{\tau}}) \right) = E \to A \cdot (1 - e^{-\frac{t}{\tau}}) + R_1 C \left(\frac{A}{\tau} \cdot e^{-\frac{t}{\tau}} \right) = E \\ & \to A + \left(\frac{R_1 C}{\tau} - 1 \right) A e^{-\frac{t}{\tau}} = E \\ & \to A = E \text{et} \tau = R_1 C \end{split}$	4x0,25		
Exp.1	$\mathcal{E}_{C} = \frac{1}{2}C \ u_{C}^{2} \rightarrow \mathcal{E}_{C,max} = \frac{1}{2}C \ E^{2}$ D'après la courbe, on a : $\frac{1}{2}C = \frac{5,5.10^{-6} - 0}{5 - 0} = 1,1.10^{-6}F \rightarrow C = 2,2 \ \mu F$	0,25 + 0,5		
Exp.1 3.a.	$\mathcal{E}_{C}(\tau) = \frac{1}{2}C \left(u_{C}(\tau)\right)^{2} = \frac{1}{2}C E^{2} \left(1 - e^{-1}\right)^{2} = \left(\frac{e - 1}{e}\right)^{2} \times \mathcal{E}_{C,max} = 0,4 \mathcal{E}_{C,max}$ $\mathcal{E}_{C}(\tau) \text{ représente } 40\% \text{ de } \mathcal{E}_{C,max}.$			
Exp.1 3.b.	$\mathcal{E}_{C}(2\tau) = \frac{1}{2}C \left(u_{C}(2\tau)\right)^{2} = \frac{1}{2}C \times E^{2}\left(1 - e^{-2}\right)^{2} = \left(1 - e^{-2}\right)^{2} \times \mathcal{E}_{C,max} = 0,75 \times \mathcal{E}_{C,max}$ $\mathcal{E}_{C}(2\tau) \text{ représente } 75\% \text{ de } \mathcal{E}_{C,max}$			
Exp.2 1.	$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$	0,5		
Exp.2 2.a.	Comme la sensibilité verticale est la même pour les deux oscillogrammes et comme $U_m > U_{Rm}$, alors c'est (S_2) qui représente $u(t)$. $u_R(t)$ est en avance de phase par rapport à $u(t)$ donc le circuit est capacitif.	0,5 + 0,25		
Exp.2 2.b.	$\begin{split} &\text{T=6 ms} \ \to \text{N=166,7 Hz} \ ; \ \ U_\text{m}\text{=}3,4 \times 0,5 \text{ =}1,7 \text{ V} ; \ \ U_\text{Rm}\text{=}3,8 \times 0,2\text{=}0,76 \text{ V} \ ; \\ &\text{I}_\text{m} = \frac{U_\text{Rm}}{R_2} \simeq 7,6 \text{ mA}. \end{split}$ Le circuit est capacitif donc : $\Delta \phi_\text{i/u} = 2\pi \frac{\Delta t}{T} \simeq 2\pi \frac{1.10^{-3}}{6.10^{-3}} = \frac{\pi}{3} \text{ rad}.$	4x0,25 + 0,5		

Exp.2 2.c.	$\label{eq:modifications} \begin{tabular}{ll} Temps: division de la sensibilité par 2 (2ms/div \to1ms/div)\\ Y1: division de la sensibilité par 4 (2V/div \to0,5V/div)\\ Y2: division de la sensibilité par 10 (2V/div \to0,2V/div)\\ \end{tabular}$	
	Avantage : augmentation de la précision lors de la lecture des valeurs de U _m , U _{Rm} et T.	
Exp.2 3.	$\cos\Delta\phi_{i/u} = \frac{R_2 + r}{Z} = \left(\frac{R_2 + r}{U_m}\right)I_m \rightarrow r = \frac{U_m}{I_m}\cos\Delta\phi_{i/u} - R_2 = \frac{1,7}{7,6.10^{-3}}\cos(\frac{\pi}{3}) - 100 \simeq 12 \ \Omega$ $tg\Delta\phi_{i/u} = \frac{\frac{1}{2\pi NC} - 2\pi NL}{R_2 + r} \rightarrow L = \frac{1}{2\pi N}\left(\frac{1}{2\pi NC} - R_2 + r \ tg\Delta\phi_{i/u}\right) \simeq 0,6 \ H$	2x0,5